翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

triangle group : ウィキペディア英語版
triangle group

In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles, a fundamental domain for the action, called a Möbius triangle.
==Definition==
Let ''l'', ''m'', ''n'' be integers greater than or equal to 2. A triangle group Δ(''l'',''m'',''n'') is a group of motions of the Euclidean plane, the two-dimensional sphere, the real projective plane, or the hyperbolic plane generated by the reflections in the sides of a triangle with angles π/''l'', π/''m'' and π/''n'' (measured in radians). The product of the reflections in two adjacent sides is a rotation by the angle which is twice the angle between those sides, 2π/''l'', 2π/''m'' and 2π/''n'' Therefore, if the generating reflections are labeled ''a'', ''b'', ''c'' and the angles between them in the cyclic order are as given above, then the following relations hold:
# a^=b^=c^=1
# (ab)^=(bc)^=(ca)^=1.

It is a theorem that all other relations between ''a, b, c'' are consequences of these relations and that Δ(''l,m,n'') is a discrete group of motions of the corresponding space. Thus a triangle group is a reflection group that admits a group presentation
: \Delta(l,m,n) = \langle a,b,c \mid a^ = b^ = c^ = (ab)^ = (bc)^ = (ca)^ = 1 \rangle.
An abstract group with this presentation is a Coxeter group with three generators.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「triangle group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.